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Since the discovery of fullerene, reactions af @ith various 100 T
compounds,such as organic azidésiave been conducted to extend = < S
the utility of Ceo.2 Photochemical reactions are also important, one :E a8 (®)
being the rearrangement of 1 8-§ubstituted)aza-[60]fulleroid4) T5 §§ 50 - 1
to 1,2-(N-substituted)aziridino-[60]fullereneg)( It is reported that gé §'§
althoughlaundergoes photochemical rearrangement2a@ 1,6- § g &2
(N-methoxyethoxymethyl)aza-[60]fulleroid is photochemically stéble. s " o ” os " Y
This example indicates tht-substituents play a crucial role in Irradiation time / s
remotely controlling the reactivities of fullerene centers. However, 100 :
systematic studies dfl-substituent effects on the photochemical = X
reactivity of fullerene derivatives have not previously been reported. o3 u::, ©)

We report here a largd-substituent effect on the photochemical :O-'f.":: S5 s0l ]
rearrangemerit — 2 for a series oN-aryl substituentsa—d shown 83 g%’
in Scheme 1. The difference in the photochemical rearrangement §§ te
rates was more than 2000-fold between the fasidéstand the ee o ok ., %
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Figure 1. Decrease and formation of (Aa—c and2a—c, (B) 1b and2b,
(C) 1ad and2a,d, and (D)1d and 2d as a function of irradiation time.
Substrates and productsa: O, 2a: @, 1b: &, 2b: @, 1c O, 2c W, 1d:
A, 2d: A. Initial concentration: (A, B) 5x 1074 M and (C, D) 1x 1075
M 1 in toluene; irradiated light:>600 nm?#

Scheme 1

than that in the latter stage, showing nonexponential curves for the
i ~win i w, consumption oflb and the formation ob. The photolyses ofd
Ar= @ i" @@Q were conducted at lower concentration because of its low solubility;
@ . .
a b R p therefore, the photolysis dfa was also conducted in the same
concentration for comparison. The photolysiddfproceeded faster
than that ofla (Figure 1C) with an exponential-like decay and rise

Absorption spectra ota—d and2a—d were similar to that of i - ! !
of 1d and2d, respectively (Figure 1D). The ratios of the required

parent Go except for a considerable increase of their molar R ) 3
extinction coefficients €) at >430 nm? In analogy with the reaction time for the completion of the reactionslgflb:1c1d
absorptions of @5 those ofla—d and2a—d at <430 nm can be ~ Was 1440:122160:360. _
assigned to the allowed transitions, and the weak absorptions at 1he photolyses afa—d in air-saturated solutions showed a large
>430 nm, to the orbital-forbidden electronic transitions. decrease in the rate of rearrangemént- 2, indicating that the
Figure 1 shows the time profiles of photochemical rearrangement "€&rrangement occurs via triplet states1ofThis conclusion is
1— 2 by >600 nm light under a nitrogen atmosphere. The figure Consistent with the report that the intersystem crossingsetad
shows the decrease béi—d and the increase @a—d as a function its derivatives from their singlet to triplet excited states is very fast

of irradiation time. The light is mainly absorbed by the forbidden and efficient )
transitions ofla—d. The nonexponential nature of rearrangemémt— 2b, shown

As seen in Figure 1A, the reaction took 20 Te) and >30 h in Figure 1B, was interpreted as a triplet sensitization by product
(1o for completion; the consumption df,c and the formation of Zp. The energy level of the triplet sta'tebfs repqr_ted .to be slightly
2a.c showed single exponential-like decay and rise, which is an higher than that ofl” so that the triplet sensitization [3b for

indication for a unimolecular process. On the other hand, Figure conversionlb — 2b seems to be reasonable.

1B shows a very fast reaction fdb, which only took 50 s for Figure 2 shows the consumption B and the formation o2b
completion. The reaction rate @b in the initial stage was slower @S & function of the ratio of the amount of initially addzalto 1b.
As seen in the figure, an increase in the consumptiotibodnd

* Author for correspondence. E-mail: ouchi.akihiko@aist.go.jp. the formation of2b was observed, which was proportional to the
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Figure 2. Yield of 2b and remainindlb as a function of the initial ratio
of additive2b to 1b. Substrates and productdy: <, 2b: #. Irradiation
time: 20 s. Initial concentration: 5 1074 M 1 in toluene. Irradiated
light: >600 nm#
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Figure 3. Nanosecond transient absorption spectra of{&)(B) 1b, and
(C) 1c. Excitation wavelength: 530 nm. Concentration:x110~* M in

toluene. Measured at (A, C) 200 ns and (B) 100 ns after the laser pulse.
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Figure 4. Nanosecond transient absorption spectra ofZ&)(B) 2b, (C)

2c, and (D)2d. Excitation wavelength: (A, C, D) 530 nm and (B) 532 nm.
Concentration: Ix 10~* M in toluene. Measured at 200 ns after the laser
pulse.

rearrangementb — 2b can be rationalized by this sensitization.
The reason for the small effect on the additior2dfin rearrange-
mentld — 2d might be due to the very short triplet lifetime »dl.
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amount of initially adde@b. This means that the rate of the reaction References

increases with the progress of the reaction, which is consistent with

the result obtained for rearrangeméit— 2b (cf. Figure 1B). In
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Figure 3 shows the transient spectralaf-c. Figure 3B only
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